	•	A liquid boils at a fixed temperature.	
	•	During boiling, vapour can form at any point within the liquid.	
	•	Without a supply of thermal energy, boiling stops.	
	Cor	nplete the following equivalent statements about evaporation.	
	•	A liquid evaporates at	
	•	Du ing evaporation	
	•	Without a supply of thermal energy, evaporation	
(b)	20 r	an containing water boiling at 100° C is standing on an electrically heated hot-plate. minutes, 0.075kg of water is lost as steam. The specific latent heat of vaporisation er is $2.25\times10^6\text{J/kg}$.	
	(i)	Calculate the energy used in converting 0.075 kg of boiling water to steam.	
		energy =	[2]
	(ii)	The hot-plate operates at 240 V, 0.65 A.	
		Calculate the energy supplied to the hot-plate in 20 minutes.	
		energy =	[2]
			[4]
	(iii)	Suggest why the answers to (b)(i) and (b)(ii) are not the same.	
		[Total:	8]

1

(a) The following are three statements about boiling.

2 In Fig. 9.1, A and B are two conductors on insulating stands. Both A and B were initially uncharged.

Fig. 9.1

- (a) Conductor A is given the positive charge shown on Fig. 9.1.
 - (i) On Fig. 9.1, mark the signs of the charges induced at end X and at end Y of conductor B. [1]
 - (ii) Explain how these charges are induced.

 [3]

 (iii) Explain why the charges at X and at Y are equal in magnitude.

(b)	B is now connected to earth by a length of wire.		
	Explain what happens, if anything, to		
	(i)	the charge at X,	
		[1]	
	(ii)	the charge at Y.	
		[2]	
		[Total: 8]	

	en he leaves work at 6.30 p.m. (18:30) one evening, a caretaker forgets to switch off the 100 W op in his office. He doesn't discover this until he returns at 7.30 a.m. (07:30) the next morning.
The	e mains electricity supply is 250 V.
(a)	Calculate how much energy the caretaker has wasted.
	energy wasted =[2]
(b)	Calculate the charge that passed through the lamp during this time.
	charge = [3]
(c)	What happened to the energy wasted by the lamp?
	[1]
	[Total: 6]

4 Fig. 7.1 shows how the resistance of the filament of a lamp changes as the current through the lamp changes.

Fig. 7.1

)	Describe now the resistance of the lamp changes.
	(5)

(b)	For	a current of 0.070 A, find
	(i)	the resistance of the lamp, resistance =[1]
	(ii)	the potential difference across the lamp,
	(iii)	potential difference =
		power = [2]
(c)	Two	o of these lamps are connected in parallel to a cell. The current in each lamp is 0.070 A.
	(i)	State the value of the e.m.f. of the cell. e.m.f. =
	(ii)	Calculate the resistance of the circuit, assuming the cell has no resistance.
		resistance =[2]
		[Total: 10]

5 (a) Fig. 10.1 shows a positively charged plastic rod, a metal plate resting on an insulator, and a lead connected to earth.

	FIG. 10.1		
	Des	scribe how the metal plate may be charged by induction.	
		[3]	
(b)	An	electrostatic generator sets up a current of 20 mA in a circuit.	
	Cal	culate	
	(i)	the charge flowing through the circuit in 15s,	
		charge =	
	(ii)	the potential difference across a $10k\Omega$ resistor in the circuit.	
		potential difference =	
		[3]	

[Total : 6]

6 Fig. 8.1 shows a high-voltage supply connected across two metal plates.

Fig. 8.1

When the supply is switched on, an electric field is present between the plates.

- (a) Explain what is meant by an *electric field*.
- (b) On Fig. 8.1, draw the electric field lines between the plates and indicate their direction by arrows. [2]

.....[2]

- (c) The metal plates are now joined by a high-resistance wire. A charge of 0.060 C passes along the wire in 30 s.

 Calculate the reading on the ammeter.
 - ammeter reading =[2]
- (d) The potential difference of the supply is re-set to 1500 V and the ammeter reading changes to 0.0080 A. Calculate the energy supplied in 10 s. Show your working.

[Total : 9]